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Outline

» Current Data Set being used

* Current Results for MC Modeling and Statistical Modeling of the
High Dose Neutron Detector (HDND)

e Current work on new Microcal Data and Results

o Current work on Voltammetry Data

Los Alamos National Laboratory UNCLASSIFIED 9/4/2018 | 2




UNCLASSIFIED

Current Framework for Advanced Integration

=g

Measurement Technologies (Bubbler,
Voltammetry, Microfluidic Sampler, Microcal,
High Dose Neutron, Electrochemical Sensor, et al)

Safeguards Model
(SSsPM)

Simulate
Measurement

Technology response

at predetermined
locations in process
given Data from

SSPM
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Statistical Analysis
on output data to
help understand the
efficacy of
measurement
technologies at
certain locations

P(X=x)=
Expected, o

Determine:
Probability of Detection
How Many Sensors?
Optimal Locations of

Sensors?
Sensor Effectiveness
vs. Diversion
Effectiveness
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New Data Generation from SSPM — SNL, Cipiti

ER Salt (KMP2)
Sampling & DA

‘ Current/Voltage ‘ [ U Product (KMP3) ]

NDA or Melt Sampling & DA

" : Monitoring
Oxide Reduction Sal — 2
Voltammetry/Actinid or | ‘ Metal Waste Form ‘ {
- | 2 NDIA |
| Hydrogen Inentont 3 \DA I|
\ . ; E———
\ - o |
Input SNF (KMP1) | H r -
Sampling & DA/NDA | Carbon Inestony——{ A
ping “‘k—; \ Carbionate Waste : i Imestony e
1AT iz \ . Metal Waste Form !
| sz rarmart \ Offgas Capture 2 Metal Waste Form |
— PG — [ ot \ e Rec Saf ||
<528 Fusl Assambles- 1t Shvecdad Fosk—— It Ssthyeron | | T | Wetal Processing -
Source Term L 1 Shredded Fusl - [ { I
SNF Storage L 4 Basiet hventory— | / T
Shreader Input [ Cfigast | Satinemony ! Advarced
oF Voloizer Accountability | 2 R Product) Wl Messis . Inestory—— [
| — St i Metals U Product - 2
= 1 U Preduct 4 Recyde! 1 YPreast
MBA1 | Reduction St wiU 1l UReo
| b2 UTRU Procuct o .
[ Sat wUTRU el AT
—————————————————————————————— Uranium Frocessing
Hot Cell ‘ Elctrorefingr /Ay ane [r—
U/TRU Drawdown Salt Off-Gas Monitor TR Frodict:
k2
netry/Actinide Sensor MBA2 Sat
UTRU Product
Frocessing
il L . ~
UTRU Cradarn oty ‘ Confirmatory
R — a/Neutron
Sat 1o Reduction—'
2 Riecovered Sai Cimiatisrromss ) [ hlm.,
] UTRU Salt to Onidant | PPV
| Salt Push y - FP Wasie
LT Deawown e aon " et - Froiton
———— (Electrolysis) o o
Bulk Mass k2 —_—
Throughout T R
not snown Electrorefiner Onddant
Production

UNCLASSIFIED 9/4/2018 | 4

Los Alamos National L.




UNCLASSIFIED

Data Gathering and Distribution

* Received detailed, time dependent plant isotopics from SNL

 Working with measurement technology groups to develop simulated
responses based on material compositions in each process
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High Dose Neutron Detector (HDND)
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HDND Measurement Locations

« U Product
— Ensure no Pu in ingot

 U/TRU Product
— Actinide accountability

e Confirmatory
Measurements

— Metal Processing
— U Product Processing

— U/TRU Product Processing

— ER Oxidant Production

Figure from SSPM - Cipiti

ER Salt (KMP2)
Current/Voltage | Sampling & DA [ U Product (KMP3) ]

Monitoring === | NDA or Melt Sampling & DA

=
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U Product Neutron Signatures

 Masses and isotopics from SSPM (Cipiti) ‘ U Product ‘

e Sources of neutrons ISO%S
— Alpha-n reactions (negligible in U and U/TRU

ingots) U Product 1% Pu 1% U/TRU
. . . (n/s-cm3) (n/s-cm3) (n/s-cm3)
— Spontaneous fission (primary source of neutron U238 | o254 0254 0254
emissions) Pu-238 |  0.000 0.169 0.169
— Multiplication in material Rt O e IOCL g g
. Induced ﬁSSion Pu-242 0.000 0.342 0.342
Cm-244 0.072 0.072 83.350
e (n,xn)
Cm-246 0.003 0.003 3.369
e Source terms [ o | o030 | 143 | ssa0 |
— U product in normal operation
— U product with 1% Pu isotopics added .
— U product with 1% U/TRU product isotopics added | MCNP Modeling |
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HDND MC Modeling

MCNP model of HDND detector
Use neutron source term created from isotopic data

Represent U product ingots in model

Count neutron captures in 1°B that result in an energy deposition within
the C10 gas sufficient to generate a pulse

» Rate of captures gives estimate of total neutron detection efficiency

HDPE A

Aluminum

201in HDND

detection cells CeeesTessTesTeansesE
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HDND Statistical Modeling

« From MC modeling we expect the following count rates for U Product and
U/TRU Product

U Product | UTRU Product Count rate IF 1% Pu is diverted to U Product

pulses/s pulses/s
Normal No Background
1% Pu -This will be the focus of statistical methods used
1% UTRU 2192.6 64311.5

Green = Integration Methods Completed
Yellow = Working

e Statistical methods will use 5 minute and 10 minute count rates
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Probability of Detection (U Product) U Product | UTRU Product

pulses/s pulses/s
Normal 7.9 66098.1
1% Pu 36.8 64640.4

* Neutron counts are modeled as a Poisson

Distribution
o | | observed — expected
e Z statistic used to detect a difference in Y
counts vexpected

 With a diversion of Pu, observed count rate

. . i 0
will be larger, therefore Z will be large S min count rate, 1% Pu

(5-60-36.8) — (5-60-7.9)

e For a 5% False Alarm rate: Z = _
_ VvH-60-7.9
Z < 1.645 (95t quantile of std Gaussian)

(36.8 — 7.9)
. - . . = 300 - |
Very High Probability of detection of Pu in Al /790
U Product (7.9 vs 36.8)

~ 178.

99.999t quantile of std Gaussian = 4.26
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Probability of Detection (U Product) U Product | UTRU Product

pulses/s pulses/s
7.9 66098.1

Normal

LT Fdiiet 1% Pu 36.8 64640.4
. 5 g——f——8 =0
— Pd is HIGHER for

© | . o longer count times

o
‘S % Q” =
O © P L’
@ A i .
it oD 7 ¥y ’; .
@ / e ——___ | Pd is HIGHER for lower
S - . background counts
2 < | Il A
= = i Y Normal count rate: 7.9 pulses/s
.§ E 5 False alarm rate: 5%
a 1 ,@ Dashed lines: 5 minute count time : : :

o = o/ Solid lines: 10 minute count time Counting for 5 minutes with no

go iac"grcéu_r‘d1 ; l background gives the same Pd as
- =" ackground Is Imes norma . . .
= | Erckaronng is 21 mes normel _countmg for 10 mins with background
e : | : ! | | Is 7.9 pulses/sec
8.0 8.2 8.4 8.6 8.8 9.0

No Background Count Rates (pulses/s)
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Probability of Detection (U Product)

U Product
e
o
@ -
c
o
2 © |
“5 (=]
o
G
F
H) ¥ Normal count rate: 7.9 pulses/s
% False alarm rate: 5%
& Dashed lines: 5 minute count time
S Solid lines: 10 minute count time
No background
Background is 1 times normal
8 _ Background is 2 times normal

I I I I I I
8.0 8.2 8.4 8.6 8.8 9.0

No Background Count Rates (pulses/s)

Frequency

U Product

UTRU Product

pulses/s
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Normal

7.9

66098.1

1% Pu

36.8

64640.4

For every circle, Pd is estimated by
counting how many times the statistic Z
exceeds threshold (1.645) using 100000

Poisson Samples

U Product with Some Pu

=
§ 71 Normal rate: 7.9 pulses/s
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Probability of Detection (UTRU Product) U Product_| UTRU Product

pulses/s pulses/s
Normal 7.9 66098.1
1% Pu 36.8 64640.4

* Neutron counts go down with a diversion of
Pu
Z observed — expected
* Due to counts being so high, easy to detect \/expected
small decreases

 With a diversion of Pu, observed count rate
will be smaller, therefore Z will be a large _ (64640.4 —66098.1)

negative A V64640.4

5 min count rate, 1% Pu

~ =57

» For a 5% False Alarm rate:
Z < 1.645 (95% quantile of std Gaussian) V300(—5.7) ~ -98

. - ) ) 98 standard deviations from no diversion mean
Very High Probability of detection of Pu in 0.00001% quantile of std Gaussian = -4.26

U/TRU Product
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Probability of Detection (UTRU Product) U Product_| UTRU Product

pulses/s pulses/s

Normal 7.9 66098.1
1% Pu 36.8 64640.4
U/TRU Product
D_ ] 0 Fat Fat Fat Fat Fat a .
- 1" - - s s - : Just like U Product —
Longer count times increase Pd
B Lower background increase Pd
c
§e]
8§ o _
EJ. (=]
% The reason for high background rates:
Z < Poisson data Stddev =SQRT(mean)
- — D . - -
8 e The square root is relatively small when
09_ Dashed lines: 5 minute count time counts are large
o 1 Solid lines: 10 minute count time
No background
Background is 20 times normal ' ]
S { Background is 50 times normal NOTE: dashed blue is
| | | d Id d
65000 65500 66000 under solid re

No Background Count Rates (pulses/s)
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HDND Conclusion

« The HDND has been shown to be HIGHLY effective at the specified
locations to check U Product and U/TRU product for Pu diversions of
relatively small amounts of Pu

e Efficiencies of the HDND were not considered

« HDND Simulation modeling still needs to be done for confirmatory
measurements

Los Alamos National Laboratory UNCLASSIFIED 9/4/2018 | 16
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Microcalorimeter (Microcal)
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Microcalorimeter

The microcalorimeter advantage:

10X better energy resolution than semiconductor detectors

* Reduce performance gap between NDA and DA
* Reduce reliance on sampling, mass spec, and chemical analysis

* Constrain diversion scenarios
» Better resolution enables better quantitative measurements

,_/x_/\_'—_"‘-«-_._._.l_____ .
N - | m== MicroCal

] M
S CdTe ] HPGe %
v . HPGe J] g

ucal
AT TR | bl ‘

102 102.5 103 104 104.5 105

1035
Energy (keV)

Pl W N A Y
|~
e T L M

Counts per 10 eV bin

. . . . - iy i 103 104
40 60 80 100 120 140 160 180 200 220 -
Energy {kev) Energy (kev) 102 102.5 103 Enerlgea(ksg\j) 104 104.5 105
. . . . . . Fi, 11 - Spectral i ding th
Potential applications in safeguards and material accounting: 104,23 keV 20Pu peak measured with HPGe
e Spent fuel U/Pu elemental composition (top) and microcalorimeter  (bottom).

 Fission products that track actinides [Hoover, 2013]

e Isotopic composition of U/TRU, Pu products
e Actinide content in wastes

3/20/2018 | 6

Los Alamos National Laboratory UNCLASSIFIED



UNCLASSIFIED

Microcal Measurement Locations

Figure from SSPM - Cipiti
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Microcalorimeter

- Gamma source terms ER Salt uCal Spectrum

created from mass data LEO4
from SSPM measurement -
locations 59.5 ke
Eu-154
LEO5 123 keV

e Locations evaluated
— Source term
— ER salt
— Fission Product Waste

 Most prominent peaks
belong to Am, Eu, and Pb

* Pu peaks difficult to
Identify above continuum Le0s

Am-241
26.3 keV Eu-155

86.5 keV

Pb-212
238.6 keV

1.E-06

Counts Per Source Gamma

1.E-07

0 50 100 150 200 250 300
Energy (keV)
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Additional Intense Microcal Peaks to consider from Simulation

UNCLASSIFIED

ER-Salt FP Waste Source Term
Energy (MeV) | Radionuclide | Energy (MeV) | Radionuclide | Energy (MeV) | Radionuclide

0.238632 Pb-212 0.238632 Pb-212 0.0595409 Am-241
0.1230706 Eu-154 0.1230706 Eu-154 0.1230706 Eu-154
0.0595409 Am-241 0.247929 Eu-154 0.238632 Pb-212
0.247929 Eu-154 0.0865479 Eu-155 0.0263446 U-237/Am-241
0.0865479 Eu-155 0.1053083 Eu-155 0.247929 Eu-154
0.1053083 Eu-155 0.115183 Pb-212 0.0865479 Eu-155
0.0263446 Am-241 0.18822 Eu-154 0.1053083 Eu-155
0.115183 Pb-212 0.045299 Eu-155 0.07466 U-239/Am-243

0.07466 U-239/Am-243 0.0600086 Eu-155 0.106123 Np-239

0.18822 Eu-154 0.176314 Sb-15 0.033196 U-237/Am-241

Los Alamos National Laboratory

UNCLASSIFIED
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ER-salt isotopes of interest

Probability of Detection for 1% and 1.5% Pu
Diverted, with 5% False Alarm Rate for Eu-155

ER-Salt: Four High Intensity Peaks

L
w - o -
& 1 Am-241 o v U-239
T Am-243
— o Monitoring ER-Salt Monitoring ER-Salt
. Q - = =
& 57 5 1% Diversion 2 1.5% Diversion
58% Chance of detection B5.4°% Chance of detecton
o Eu-155 Peak at 10531 kel/ o Eu—155 Peak at 105.31 kel
w 7 & @ gi § 7 - §
1 o -;,\.] ..... oo [+
[3¢] o — 0000 Q0 “Opooooooo =T N
‘E T T T T T T T T g ,83 B g %
8 59.40 5955 59.70 7455 7467 7480 g ; X
P - -
: - ' 3 b |
2 881 Ew155 L e ™ Eu-154 _ g g
O ] & I ;l—l'
) 3 a e r T T T T T T T T T 1 = T T T T T T T T T T 1
9 — w i a 20 40 1] an 100 120 a 40 1] BD 100 120
| Observed Test Statistic Chsenved Test Statistic
o ) Boofe “Pgoooo - oc ._;:;;--.11: [o]:!
I T I I I I I .
105.20 105.31 10543  122.95 123.08 123.20 Diverted
Energy (keV) 0% 0.05
1% 0.58
1.5% 0.964
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ER-FP Waste: High Intensity Peaks

Interest

ER-Source Term: High Intensity Peaks
U-237/Am-241 U-2377/Am-241

w o
5 " - |
= = 2 Lo e et s ol e .
w2 Eu-155 o Eu-155 & ) 8 L it s : :
a3 33.25 335
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o
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i &) Eu-154
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& 3
o, TT IV, | P T |
= & x5 B 3 5 TS Ir-(-cr_i'll_.. cl.
- wy o
i v | IR i ; 1234 1234
4 i o @ o I Eu-154
o ("] uy
L) a4
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Frequency

500 1000 1500 2000 2500

0
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Source Microcal Detection

ER-Source Term: Np—239

180k

130k

Counts / cm*3 -s

Isotopes

T
105.50

Monitoring ER Source Term

1% Diversion

32.1% Chance of detection
Np-239 Peak at 106.1 keV

T T T T
105.75 106.00 106.12 106.25

Energy (keV)

2000 2500
L

1500

Frequency
|

1000
|

500
|

0
L

T
106.50

Monitoring ER Source Term

1% Diversion
59.3% Chance of detection
| Np—-239 Peak at 106.1 keV

40 60 80 100

Observed Test Statistic

Los Alamos National Laboratory

120 140 0

40 60 80 100 120 140

Observed Test Statistic
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Energy Bin Range

105.8 - 106.44
(solid black lines)

106.02 - 106.22
(dashed black lines)

* Hard to see definitive peaks on many

» Consider Np239, peak is supposed to
be at 106.12 keV.

* Noisy data points near peak lower Pd

e Its important to be able to define
region of interest when determining
Pd — especially when there is “noise”

Pd
1%
Divsersion)

0.321

0.593

0/4/2018 | 24
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Microcal Conclusions

» Microcalorimeter is exceptional at detecting small diversions using intense
peaks in the spectrum as the statistical data point

» Surrogate data for the Electro Refiner shows principle detecting elements
such as Americium, Curium, Uranium, Neptunium are good indicators, if
peaks standout

» Large peaks such as Eu-155, Am-241, Eu-154, U-239/Am-243 may be
utilized for detection, once better isotopic data is known and an understanding
how these isotopes changes according to diversions

* Only looked at variability in counting statistics and need to characterize other
sources of uncertainty

Los Alamos National Laboratory UNCLASSIFIED 9/4/2018 | 25
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Voltammetry
Ongoing Analysis....

Los Alamos National Laboratory UNCLASSIFIED 9/4/2018 | 26
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Voltammetry Simulation

-400
_ * Elemental mass data from the
-350 SSPM EChem model sent to
&~ - Voltammetry development team at
£ -300-_ ANL
E 2504
z "0 ' * N. Hoyt simulated the response of
s | the instrument to the provided ER
= 150+ salt composition
]
3 -100- :
|  Black line represents total current
50 4 density
0 -

» Dotted lines show species
contributing to current density

potential vs Cl'/Cl,
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-350

-300

Current Density (mA-cm?)
. o s
(=] w
(=] (=]

=
o
o

-100

-50

0

[

-2.5

—Pu 100% baseline concentration
—Pu99% baseline concentration
—Pu 95% baseline concentration

—Pu 90% baseline concentration

-2.6 -2.7 -2.8 -2.9 -3 -31 -3.2 -33
Applied Voltage (V)

-3.4

-35

Repeated simulation, varying the Pu
concentration of the ER salt to see how
the waveform changes shape.

UNCLASSIFIED

Voltammetry Simulation, cont.

-55

-50

-45

-40

Current Density (mA-cm?)

-35

-30

-25

Changes in Pu concentration alters
waveform slightly

—Pu 100% baseline concentration
——Pu 99% baseline concentration
—Pu 95% baseline concentration

——Pu 90% baseline concentration

-2.8 -2.85 -2.9 -2.95 -3 -3.05 -3.1

Applied Voltage (V)
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Voltammetry Conclusion

« Small change in Pu concentration alter the waveform

* Need to determine if the difference from normal to off-normal
concentrations is significant enough for definitive conclusions to be
made regarding diversion

e Current work is ongoing

 Thanks to ANL for simulated voltammetry response

Los Alamos National Laboratory UNCLASSIFIED 9/4/2018 | 29
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Future Work

* Analyze Confirmatory Measurement locations
with simulated HDND

« Begin Voltammetry Integration Analysis with the YEAHCI'M GONNA NEED MORE

data we’ve received

« Work with Bubbler SME’s to determine
integration approach, simulation and analysis

« Work with Microfluidic Sampler SME’s to !
determine integration approach, simulation and ., ‘ '

analysis e N
THATWOULD BEGREAT

makeameme.org

« Data Flow Sheet development — currently using
SSPM data, but need to double check
integration of AMPYRE, DyER —what is the
campaign wide process model flowsheet?

Los Alamos National Laboratory UNCLASSIFIED 9/4/2018 | 30
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END
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Test Statistic for Comparing Spectra of Counts

Ne
(Observed,—~ Expected ,)?

X? =
Expected,

k=1

Compare the observed counts in a particular energy bin to the
expected counts—add up over all energy bins

Expected counts from spectrum of in-control process
X 2 has an approximate chi-square distribution
« Chi-squared distributions used for “goodness of fit”

X 2is large when counts are different enough—set a threshold for
what is large

Los Alamos National Laboratory UNCLASSIFIED 3/20/2018 | 8

Threshold determines false positive and detection rate
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